Cooperative Near-Infrared to Visible Up-conversion Luminescence of Tb\(^{3+}\)/Yb\(^{3+}\) Co-doped \(\alpha\)-NaYF\(_4\) Single Crystal

ZHANG Jiazhong\(^1\), XIA Haiping\(^1\), JIANG Yongzhang\(^1\), YANG Shuo\(^1\), GU Xuemei\(^1\), ZHANG Jianli\(^1\), JIANG Haochuan\(^2\), CHEN Baojiu\(^3\)

(1. Key Laboratory of Photoelectronic Materials, Ningbo University, Ningbo 315211, Zhejiang, China; 2. Ningbo Institute of Materials Technology and Engineering, the Chinese Academy of Sciences, Ningbo 315211, Zhejiang, China; 3. Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning, China)

Abstract: The up-conversion (UC) luminescence and the pump power dependence on the UC emissions of the Tb\(^{3+}\)/Yb\(^{3+}\) co-doped \(\alpha\)-NaYF\(_4\) single crystals grown by the Bridgman method under the excitation of near-infrared light at 980 nm were investigated. The results show that three or two excited Yb\(^{3+}\) ions transferring the energy to a Tb\(^{3+}\) ion can lead to the three- or two-photon UC process. The efficient three-photon UC emission at 381, 414, 435 and 462 nm and the two-photon UC emissions at 481, 541, 587, 651, 659 and 668 nm occur due to the transitions \(\bar{5}D_{3} \rightarrow \bar{7}F_{J}(J = 6, 5, 4, 3)\) and \(\bar{5}D_{4} \rightarrow \bar{7}F_{J}(J = 6, 5, 4, 3, 2, 1)\) of Tb\(^{3+}\), respectively. The optimized Yb\(^{3+}\) concentration is 7.98% (mole fraction) at Tb\(^{3+}\) concentration of 0.52%. It is indicated that Tb\(^{3+}\)/Yb\(^{3+}\) doped \(\alpha\)-NaYF\(_4\) single crystal is a promising candidate of the UC material applied for the green solid-state laser.

Keywords: sodium yttrium fluoride single crystal; terbium/ytterbium co-doped; up-conversion luminescence; rare-earth luminescence

1 Introduction

The up-conversion (UC) luminescence is a process, which emits higher-energy visible photons after absorbing lower-energy infrared photons. This is widely used in sensing, volumetric displays, biological fluorescence and photo dynamic therapy due to its unique features in sharper emission lines, superior photostability...
and near absence of background light[1–4]

Some rare earth elements doped oxide, fluoride, sulfide, and fluoride-oxide compounds for the UC luminescence were investigated [3–4]. It is known that the multi-phonon nonradiative decay rate is mainly responsible for the reduction of the luminescence intensity, and it can be given as [5]

\[W_n = W_0[1-\exp(h\nu/kT)]^n \]

(1)

where \(W_n \) is the decay rate at temperature \(T \); \(W_0 \) is the decay rate at 0 K, \(\nu \) is the relevant phonon’s frequency, \(n = \Delta E/\hbar\nu \), \(\Delta E \) is the energy gap between the levels involved. When \(\Delta E \) is equal to or less than 4–5 times of the phonon energy, the multi-phonon nonradiative relaxation with the emission of a few high energy phonons becomes competitive with radiative processes [6]. In order to reduce the multi-phonon nonradiative relaxation and realize the high efficient UC luminescence, low maximum phonon energy hosts are required. Fluoride NaYF₄ is considered as one of the most efficient UC materials due to its low phonon energy [7–9]. NaYF₄ in form of single crystal is easier to realize their applications due to the high transmission for lights, good physical and mechanical performance, as well as good chemical durability. However, little work on the UC emission in NaYF₄ single crystals has been reported due to the difficult growth of NaYF₄ single crystal.

Tb3+ ions have attracted great attentions in recent years due to its unique properties, which can emit bright green light, and be used in photonics system [10–12]. In the absence of intermediate levels, Tb3+ ions cannot absorb the near-infrared (NIR) excitation photons to generate the UC. Tb3+ ions have a great absorption cross section of cubic \(\alpha \)-NaYF₄ in the JCPDS card (77–2042). The \(\alpha \)-NaYF₄ single crystal is transparent to the near-infrared (NIR) excitation photons to generate the UC. Tb3+ ions have a great absorption cross section around 980 nm. By co-doping with Yb3+ ions, we could realize the UC of Tb3+. In this case, Tb3+ ions can emit its characteristic luminescence by absorbing energy from pairs of excited Yb3+ ions.

The efficient UC emission from a pair of Tb3+/Yb3+ was realized in tellurite glasses [13]. In this paper, Tb3+/Yb3+ was co-doped in \(\alpha \)-NaYF₄ single crystals grown by the flux Bridgman method. The effect of ionic ratio between Tb3+ and Yb3+ on the UC emissions was investigated. The high efficient UC luminescence of Tb3+/Yb3+ co-doped \(\alpha \)-NaYF₄ single crystal under 980 nm excitation was analyzed, and the UC mechanism was discussed.

2 Experimental

Samples with a purity of 99.99% NaF, KF, YF₃, TbF₃, and YbF₃ were prepared according to the formula 30NaF–18KF–(52–\(\chi \))YF₃–\(\chi \)TbF₃–\(\gamma \)YbF₃ \((\chi = 0.5, \gamma = 0, 1.0, 2.5, 4.0) \). respectively. The mixture of those materials was ground in a mortar for 1 h. In a high-temperature hydrofluorination method, the powders were sintered with anhydrous HF at 750 °C for 8 h. The moisture and oxygen impurities in the fluoride powders were removed after sintering. The growth orientation was directed along \(\alpha \)-axis by using an oriented seed crystal. The seed was firstly put in the bottom of seed well and then the sintered polycrystalline powders were filled in Pt crucibles of \(\varphi 10 \text{ mm} \times 150 \text{ mm} \) size. The crucibles were completely sealed and put into the vertical Bridgman growing furnace. The growing process was carried out by lowering the crucible at a rate of 0.05–0.06 mm/h. The seeding temperature was 770–820 °C and the temperature gradient across the solid-liquid interface was 70–90 °C/cm.

The X-ray diffraction (XRD) pattern of the sample was measured using a model XD-98X X-ray diffractometer (Purkinje General, Beijing, China). The emission spectra were obtained with a model FLSP 920 spectrometer (Edinburgh Co., UK). The Tb3+ and Yb3+ concentrations in \(\alpha \)-NaYF₄ single crystal were measured by an inductive coupled plasma atomic emission spectroscopy (ICP-AES, PerkinElmer Inc., Optima 3000, USA). Concentration of Tb3+ and Yb3+ ions in the \(\alpha \)-NaYF₄ single crystals as shown in Table 1. All the measurements were performed at room temperature.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mole fraction of Tb3+/%</th>
<th>Mole fraction of Yb3+/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.51</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>0.52</td>
<td>1.98</td>
</tr>
<tr>
<td>S3</td>
<td>0.51</td>
<td>4.97</td>
</tr>
<tr>
<td>S4</td>
<td>0.52</td>
<td>7.98</td>
</tr>
</tbody>
</table>

3 Results and discussion

Figure 1(a) is the photograph of polished Tb3+/Yb3+ co-doped \(\alpha \)-NaYF₄ (\(\alpha \)-NaYF₄:Tb/Yb) single crystal. Clearly, the \(\alpha \)-NaYF₄:Tb/Yb single crystal is transparent and appears slightly yellow color. Figure 1(b) shows the XRD patterns of the grown single crystal. The diffraction peak positions of the crystal match perfectly with those of cubic \(\alpha \)-NaYF₄ in the JCPDS card (77–2042). The lattice constants of \(\alpha \)-NaYF₄:Tb/Yb single crystal were calculated from the XRD pattern data as the following lattice parameters: \(a = b = c = 0.546 \text{ nm} \), which are close to the standard parameters (\(a = b = c = 0.547 \text{ nm} \)). Also, it is indicated that all the samples can be crystallized into a pure cubic phase, and \(Y^{1+} \) sites of \(\alpha \)-NaYF₄ single crystals are substituted by Tb3+ and Yb3+ ions.

Figure 2 shows the UC emission spectra of all the samples in the wavelength range 450–700 nm. Clearly, there are the UC emissions at ~381, ~414, ~435, ~462, ~481, ~541, 587, 651, ~659 and 668 nm, and the corresponding radiative energy transfer processes occur. Compared to the relative intensity of all the
samples, the intensity at ~462, ~481, ~541, 587, 651, ~659 and 668 nm increases rapidly as the Yb$^{3+}$ content increases from 0 to 7.98% in mole.

There is no concentration quenching although the Yb$^{3+}$ is 7.98%. In order to know the exact UC emission color, the CIE chromaticity coordinates of Tb$^{3+}$/Yb$^{3+}$ co-doped α-NaYF$_4$ single crystals are calculated. The CIE coordinates (x, y) are (0.265 2, 0.686 7), (0.2606, 0.668 2) and (0.255 7, 0.566 3), for 0.52%Tb/1.98%Yb, 0.51%Tb/4.97%Yb and 0.52%Tb/7.98%Yb α-NaYF$_4$ single crystals, respectively. All the samples appear a yellow-green color, which can be applied for sensing, volumetric displays, biological fluorescence and photo dynamic therapy.

There is also a weak peak at ~583 nm due to the transition of 5D_4→7F_4. Also, three Yb$^{3+}$ ions can transfer the energy to a Tb$^{3+}$ ion and excite Tb$^{3+}$ ion from 7F_6 to 5D_3, the excited Tb$^{3+}$ ion at 5D_4 can absorb one 980 nm photon and excite to 5D_1 and then relax to 5D_3 nonradiatively (see Fig. 4). In Fig. 2, the emissions at 381, 414, 435 and 461 nm are emitted due to transition of

Figure 4 shows the energy level diagram of Tb$^{3+}$ and Yb$^{3+}$. Clearly, no transfer of excitation energy from an Yb$^{3+}$ in 2$^F_{5/2}$ level to Tb$^{3+}$ occurs. It is reasonable to consider the energy transfer simultaneously from a pair of Yb$^{3+}$ ions both excited to the 2$^F_{5/2}$ level to a Tb$^{3+}$ ions. When pumped by 980 nm laser, Yb$^{3+}$ ions are firstly excited from 2$^F_{7/2}$ to 2$^F_{5/2}$ level, and then a couple of excited Yb$^{3+}$ ions can transfer the energy to a Tb$^{3+}$ ion and excite Tb$^{3+}$ ion to 5D_4. In Fig. 2, the main intense green emission at ~541 nm is assigned to the 5D_4→7F_5 transition. Other blue emission at ~481 nm and red emission at ~651, ~659 and 668 nm are corresponding to 5D_4→7F_6 and 5D_4→7F_J (J=3, 2, 1), respectively, and Figure 3 shows all the energy transfer processes [15]. There is also a weak peak at ~583 nm due to the transition of 5D_4→7F_4. Also, three Yb$^{3+}$ ions can transfer the energy to a Tb$^{3+}$ ion and excite Tb$^{3+}$ ion from 5D_4 to 3D_3, the excited Tb$^{3+}$ ion at 3D_3 can absorb one 980 nm photon and excite to 5D_1 and then relax to 5D_3 nonradiatively (see Fig. 4). In Fig. 2, the emissions at 381, 414, 435 and 461 nm are emitted due to transition of
$^{5}D_{3} \rightarrow ^{7}F_{j}$ ($J=6, 5, 4, 3$), respectively. Some of the emission peaks show energy stark splitting of Tb$^{3+}$ under the action of α-NaYF$_4$ single crystals. Almost all the possible UV, blue, green and red luminescences appear in the Tb$^{3+}$/Yb$^{3+}$ doped α-NaYF$_4$ single crystals possibly due to the well cubic phase and low phonon energy of the single crystals. When Tb$^{3+}$ concentration is 0.52%, the total UC intensity reaches its maximum value at Yb$^{3+}$ concentration of 7.98%. It is expected that the UC emission could be further improved by further increasing the Yb$^{3+}$ concentration.

![Simplified Energy level diagram and possible upconversion luminescence mechanisms of Tb$^{3+}$ and Yb$^{3+}$ ions codoped α-NaYF$_4$ single crystals.](image)

Fig. 4 Simplified Energy level diagram and possible upconversion luminescence mechanisms of Tb$^{3+}$ and Yb$^{3+}$ ions codoped α-NaYF$_4$ single crystals.

Conclusions

α-NaYF$_4$ single crystals co-doped Tb$^{3+}$ ion at 0.51% and in the range of Yb$^{3+}$ ion from 0% to 7.98% were grown by the improved Bridgman method. The UC emissions in the range of UV and VIS rapidly increased as the Yb$^{3+}$ content increased from 0 to 7.98% under a 980 nm diode laser excitation. The three-photon process was due to the UC emissions at 381, 414, 435 and 462 nm, and the two-photon process was due to the emissions at 481, 541, 587, 651, 659 and 668 nm. The green emission at 541 nm due to $^{5}D_{4} \rightarrow ^{7}F_{6}$ was the most intense in all the UC emissions. A yellow-green color could be generated by a simultaneous mixture of all the UC emissions. The results proposed that the Tb$^{3+}$/Yb$^{3+}$ codoped α-NaYF$_4$ single crystals could have potential applications in the optoelectronic fields such as sensing, volumetric displays, biological fluorescence and photo dynamic therapy.

References:

