Preparation of Hydroxyapatite Co-doped by Fluoride and Carbonate Ions

ZHOU Qingsxia, HAN Dan, LI Yaming
(School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, China)

Abstract: The hydroxyapatite doped by fluoride and carbonate ions (CFHA) had been synthesized by co-precipitation method. The effects of Na⁺ ions existence, adding mode of Iye, Ca/P molar ratio of raw materials and dopant concentration on the morphology and structure of CFHA were investigated by X-ray diffraction, Fourier transform infrared spectra and transmission electron microscope. The results show that the isomorphic substitution of Na⁺ can improve crystal growth and reduce lattice distortion. Fluoride concentration has less effect on the morphology, while the size and aspect ratio of samples decrease as the increases of carbonate concentration. The existence of Na⁺ and high F⁻ and CO₃²⁻ concentrations are in favor of type-B substitution of carbonate. Sheet-like morphology apatite with less CO₃²⁻ substitution content can be obtained by adding Iye after the reaction; adding Iye before the reaction promotes the crystal agglomeration. The single-phase carbonate-doped apatite can be obtained by controlling the molar ratio of Ca/P sources.

Keywords: hydroxyapatite; carbonate; fluoride; co-doping; substitution type; morphology

羟基磷灰石(hydroxyapatite, HA)成分及结构与人体骨组织无机成分相似，常用作硬组织修补和替代生物活性材料。然而人体自然骨中磷灰石矿物的无机组分并非纯的 HA，还含有少量的 CO₃²⁻、Na⁺及 F⁻等，并以替代的方式进入磷灰石品格[1]。CO₃²⁻能替代 HA 晶格中的 OH⁻或 PO₄³⁻，分别形成 A 型或 B 型替代，或同时占据 2 个位置，形成 AB 型替代[2]。CO₃²⁻的存在可有助于满足人体自然骨既有一定的稳定性，又可能被正常吸收的生理需要[3]。F⁻是取代结构中的 OH⁻，改善磷灰石的溶解性，进而显著提高其在生理液中的稳定性，进一步促进磷酸钙在成骨过程中的生物矿化和骨组织中磷灰石晶体的形成[4]。近年来，在生物材料研究领域，磷灰石的掺杂改性已成为一个研究热点。

由于复合掺杂在优化磷灰石结构和性能方面能够取长补短，因此在单一掺杂的基础上，不少学者
研究了复合掺杂对磷灰石结构和性能的影响。碳酸根和氟替代对磷灰石的结构和性能均有不同程度的影响[5-8]，可以控制控制碳酸根和氟复合掺杂磷灰石(CFHA)中磷酸根和氟的替代，调控 CFHA 的综合性能。除了替代量和替代类型，CFHA 的结构和尺寸对生物学性能也有着重要影响。而在 F-、CO3²⁻ 以及体系中其他外加阳离子共存的情况下，CO3²⁻ 和 F- 的复合替代存在多种可能。实际反应体系中反应离子存在浓度、温度、反应条件等也必将使得实际替代过程非常复杂[9-12]。考虑到 Na⁺ 会取代 Ca²⁺ 而与 CO3²⁻ 发生共替代[13]，pH 值会影响 CO3²⁻ 在反应溶液中的稳定性以及磷源的水解[14]。CO3²⁻ 与 F⁻ 初始浓度直接影响磷酸根和氟的替代量[12]，而铝源磷酸的摩尔比直接影响产物物相[15]。而研究体系中 Na⁺ 掺杂、碱液的添加时机、Ca 与 F 摩尔比和钙源浓度对于 CFHA 结构和形态的影响。

1 实验

1.1 CFHA 的制备

通过化学沉淀法制备 CFHA，以 Ca(NO3)2·4H2O、(NH4)2HPO4、NH4F、NaHCO3、NH4HCO3、NaF 为反应原料，所有溶剂和试剂均为分析纯。在机械搅拌下，Ca(NO3)2·4H2O 溶液中匀速滴加(NH4)2HPO4、NaHCO3、NaF 混合溶液，滴定过程中通过 NaOH 溶液控制 pH 在 10 左右，水浴控温 60 ℃。滴加反应结束后，继续搅拌 3 h，然后在室温下静置 24 h，再用蒸馏水洗涤，乙醇洗，抽滤、干燥。控制碳源和磷酸的摩尔比为 1.67，控制 NaHCO3、NaF 的添加量以制备不同掺杂离子浓度的样品，如 n(CO3²⁻)/n(PO4³⁻)=0.06，n(F⁻)/n(Ca²⁺)=0.04，记为 CF3F, Na，其它浓度样品编号以此类推。

考虑到湿法制备磷灰石时，CO3²⁻ 主要替代 PO4³⁻ 发生 B 型替代，采用上述含 Na 体系，通过控制原料中碳源和磷源的摩尔配比使得 n(Ca²⁺)/[n(PO4³⁻)+n(CO3²⁻)]=1.67，其他反应条件不变。

反应条件保持不变，将上述反应原料中 NaHCO3、NaF 替换成 NH4F、NH4HCO3，使用氨水替代 NaOH 溶液，控制反应 pH 值在 10 左右，得到无 Na 系列样品。

反应条件保持不变，不同上述将磷源滴加到钙源的湿和过程中滴加碱液控制 pH 值的方式，采用在反应前或反应后一次性加入碱液控制 pH 值约为 10，分析碱液的添加时机对替代和形态的影响。

1.2 表征

用 JSM-2010 型透射电子显微镜表征样品的微观形貌。用 Panalytical Xpertpro 型 X 射线衍射仪分析样品的物相组成。工作条件为管压 40 kV，管流 40 mA，2θ 的步长为 0.2°。采用慢速扫描来确定峰位的准确位置，工作条件为管压 40 kV，管流 40 mA，2θ 的步长为 0.02°。采用 KBr 压片法(样品与溴化钾质量比控制为 1:50)，用 Nexus 型 Fourier 红外光谱仪评价样品的物相情况(分辨率 为 4 cm⁻¹)。

2 结果与讨论

2.1 体系中 Na⁺ 的存在对替代的影响

Na⁺ 与 Ca²⁺ 的半径相近，易与磷灰石 Ca²⁺ 发生替代，参与 CFHA 的结晶，从而改变磷灰石晶体的生长习性，减少碳酸根替代导致的磷灰石晶体结构畸变程度，促进 CFHA 晶体的生长。图 1 为含 Na⁺ 和不含 Na⁺ CFHA 样品的 TEM 照片。由图 1 可见，在相同的反应环境下，含有 Na 体系得到的晶体尺寸以及长径比都要大于不含 Na 体系的。

![图 1 含 Na⁺ 和不含 Na⁺ CFHA 样品的 TEM 照片](image-url)

Fig. 1 TEM images of the samples prepared without Na or with Na ions
图2为含Na⁺和不含Na⁺CFHA样品的FTIR谱。由图2可见，2个样品都显示了磷灰石的典型谱带：1090～1044 cm⁻¹（PO₄³⁻非对称伸缩振动），960 cm⁻¹（PO₄³⁻对称伸缩振动），570和600 cm⁻¹（PO₄³⁻弯曲振动）[16]以及位于1640 cm⁻¹的吸收水峰位，但C₂₂F₄Na样品的1460，875，1420 cm⁻¹的CO₃²⁻典型特征峰[17]强度明显弱于C₂₂F₄样品。这是因为C₂₂F₄样品的碳酸根引入源NH₄HCO₃不稳定，易分解成CO₂逸出，故在反应过程中溶液中CO₃²⁻浓度降低，从而进入磷灰石晶格中CO₃²⁻替代量也随之减少。

图3含Na⁺和不含Na⁺CFHA样品的XRD谱

图3 XRD patterns of the samples prepared without Na or with Na ions

2.2 氟和碳酸根浓度的影响

图4为不同氟掺杂浓度样品的TEM照片。从图4可以看出，氟替代羟基对磷灰石的形貌并没有明显影响，这一点与Chen等得出的结论相符[21]，而碳酸根替代对CFHA形貌有显著影响，随碳酸根浓度的增加，晶粒尺寸和长径比都随之变小，这是因为离子浓度对热力学常数存在一定的影响；磷灰石的溶度积(Ksp)随碳酸根含量的增加而增加，从而结晶驱动力随着lnKsp的增加而减少[22]。在较小的驱动力作用下，长径比更小的小尺寸晶体更容易形成。

图5为不同氟掺杂浓度制备样品的FTIR光谱。由图5可见，由于F进入通道结构替代OH[23]，630 cm⁻¹处羟基峰消失。峰位1460 cm⁻¹对应的是CO₃²⁻的A型和B型混合替代，1420 cm⁻¹对应的是CO₃²⁻的B型替代峰。通过计算E₁ 450/E₁ 460的比值，在一定程度上可以反映替代类型的改变[24]。对图谱C₂₂F₄Na、C₂₂F₄Na和C₂₂F₁₆Na可知，1460，875，1420 cm⁻¹的CO₃²⁻典型特征峰强度随着磷酸根初始浓度的增加而增加，而且图谱C₂₂F₁₆Na中出现1500 cm⁻¹属于CO₃²⁻的A型替代峰，而图谱C₂₂F₁₆Na中并没有出现，这表明随着初始磷酸根离子的浓度增加，不仅磷酸根替代量增加，而且替代类型也发生变化。这是因为PO₄³⁻基团位于A型替代通道的边界，因此随着CO₃²⁻浓度的增加，CO₃²⁻逐渐替代PO₄³⁻，导致A型替代位置的CO₃²⁻可能会被B型替代位置的CO₃²⁻包覆，形成不稳定的结构，逐渐A型替代位置的CO₃²⁻会从结构中消失，进入到B
型位置当中, 从而得到更多的 B 型替代。而通过图 5 中 E_{1g}^{20}/E_{1u}^{460} 可知, 具体替代促…
因此，根据六方晶系的晶面间距计算公式\(^{[27]}\)，可知样品\(\text{C}_2\text{F}_7\text{Na}\) 由于\(a\)轴的减小，(211)、(300)晶面峰位略微向高角度偏移。由于\(c\)轴的增大，从而峰位(002)略微向低角度移动。同理，对于样品\(\text{C}_2\text{F}_7\text{Na}\) 和 \(\text{C}_2\text{F}_7\text{Na}\)，由于\(\text{CO}_3^{2-}\)浓度增加更有利于\(B\)型替代发生，导致前者晶格中的\(a\)轴减小，\(c\)轴增加。同样地，(211)、(300)晶面峰位略微向高角度偏移，峰位(002)略微向低角度移动。

图 6 不同掺杂浓度制备样品的 XRD 谱

Fig. 6 XRD patterns of samples prepared at different dopant concentrations

2.3 碱液添加方式的影响

图 7 为不同碱液添加方式制备样品的 TEM 照片。由图 7 可见，碱液添加方式对于晶体形貌有明显影响。反应过程中滴加碱液和反应前添加碱液这 两种方式得到的晶体呈小尺寸短棒状，而反应后再加碱液控制 pH 值得到的主要是一片状大晶体。由于磷酸根在溶液中的水解与溶液的 pH 值有关\(^{[28]}\)。当 \((\text{NH}_3)\text{HPO}_4\) 滴加到 \(\text{Ca(NO}_3)_2\cdot4\text{H}_2\text{O}\) 溶液中，首先发生 的反应是 \(\text{Ca}^{2+}+\text{HPO}_4^{2-}+2\text{H}_2\text{O} \rightarrow \text{CaHPO}_4+2\text{H}_2\text{O}\)。得到的主要沉淀物是 \(\text{CaHPO}_4\)；随着氨水的加入，pH 值增加。\(\text{CaHPO}_4\)进一步反应生成 \(\text{Ca}_3\text{(PO}_4)_2\)；当 pH 值为 10 左右时，主要沉淀物是 \(\text{Ca}_3\text{(PO}_4)_2\cdot6\text{(OH)}_2\)。在将磷源与钙源滴加混和反应过程中，添加碱液使得反应的过程 pH 值一直稳定维持在 10 左右，于是带负电荷的\(c\)轴主要生长基元 \(\text{Ca}_3\text{P}_6\text{O}_{24}^{2-}\)离子团吸附速率降低，从而最终生成的磷灰石长径比较小，如图 7a 所示。反应前添加碱液的方式，反应溶液初期就已经存在大量的 OH\(^-\)，晶核形成速率加快，而晶核形成过快就会形成大量的基元，并且出现大量团聚，如图 7b 所示。而先不加碱液的反应条件下，体系的 pH 值接近中性，形成的是 \(\text{Ca}_3\text{(PO}_4)_2\) 晶核。当滴加反应完成后，再通过一次性加入碱液调节 pH 约为 10，虽然物相发生改变，最后形成的主晶 相为 \(\text{Ca}_{10}\text{(PO}_4)_4\text{(OH)}_2\)（见图 9），但形貌上仍保留了 \(\text{Ca}_3\text{(PO}_4)_2\) 的片状外型，如图 7c 所示。

图 7 不同碱液添加方式制备样品的 TEM 照片

Fig. 7 TEM images of the samples prepared at different addition mode of lye

图 8 为不同碱液添加方式制备样品的红外光 谱。从碳酸根特征峰的振荡强弱可知，反应过程中滴加碱液和反应前添加碱液这 2 种方式得到样品碳酸根含量稍高，这是因为先加入碱液以及正常滴加 碱液这种反应方式当中，反应溶液当中存在大量的 OH\(^-\)，在这种反应环境下，\(\text{CO}_3^{2-}\)能稳定存在于反应体系中，保障了后续进入 \(\text{PO}_4^{3-}\)结构替代 \(\text{CO}_3^{2-}\)含 量。
而前期未加碱液调节的情况下，体系呈中性或弱酸性，反应溶液中的 CO_3^{2-} 会发生分解，从而能进入晶格当中的 CO_3^{2-} 减少。

图 9 为不同碱液添加方式制备样品 XRD 谱。在同样的条件下，后加碱液方式与前加碱液方式制备样品最强峰峰高比为 1.44，而(002)晶面的半高宽之比为 0.67。这是因为后加碱液方式制备样品中碳酸根替代量较小(见图8)，从而结晶程度更好。

![图8：不同碱液添加方式制备样品的红外光谱](image)
Fig. 8 FTIR spectra of the samples prepared at different addition mode of lye

![图9：不同碱液添加方式制备样品的XRD谱](image)
Fig. 9 XRD patterns of the samples prepared at different addition mode of lye

2.4 钙磷配比的影响

图 10 为不同 Ca/P 配比制备样品的 FTIR 光谱，由图 10 可知，控制 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})=1.67$ 的样品 1 460、1 420 和 875 cm$^{-1}$ 的 CO$_3^{2-}$ 振动峰强度比 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})+n(\text{CO}_3^{2-})=1.67$ 样品明显增加。在控制相同的钙源摩尔浓度和 $n(\text{CO}_3^{2-})/n(\text{PO}_4^{3-})=0.22$ 的条件下，前者由于初始 CO$_3^{2-}$ 含量相较于后者的 CO$_3^{2-}$ 含量有所增加，进入晶格形成结构碳酸根的量增大。

![图10：不同Ca/P配比制备样品的FTIR光谱](image)
Fig. 10 FTIR spectra of the samples prepared at different molar ratio of $n(\text{Ca})/n(\text{P})$

研究表明[30]，当 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})$ 在 1.50～1.67 范围内，产物为 HA 和 β-TCP。当 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})$ 在 1.68～1.70 范围内，合成的是 HA。当 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})$ 超过 1.7 时，产物为 HA 和 CaO。考虑到 $n(\text{CO}_3^{2-})/n(\text{PO}_4^{3-})=0.22$ 时，通过计算，样品 b 的 $n(\text{Ca}^{2+})/n(\text{PO}_4^{3-})$ 约为 2.0，使得图 11 中出现了 CaO 杂相峰。样品 b 的衍射峰相较于样品 a 的更加尖锐，这与上述分析中提到样品 a 的碳酸根含量高，所以结晶度低的结果相对应。

![图11：不同Ca/P配比制备样品的XRD谱](image)
Fig. 11 XRD patterns of the samples prepared at different ratio of $n(\text{Ca})/n(\text{P})$

3. 结论

1) Na$^+$ 的存在促进磷灰石晶体的生长，且 Na$^+$/CO$_3^{2-}$ 共替代更有利于碳酸根的 B 型替代。

2) 由于碳酸根在反应过程中的损失，后添加碱液方式得到磷灰石晶格 CO$_3^{2-}$ 较少，晶体呈片状形状，而反应前添加碱液的方式使晶核形成速率过快，从而出现大量晶体团聚现象。
3) 原料的钙磷比对影响磷灰石的碳酸根替代和物相组成。

4) 碳酸根和氟共掺杂时，氟浓度对于羟基磷灰石形貌影响不大，而随着碳酸根浓度增加，磷灰石尺寸和长径比相应减少，且在高 F- 和 CO$_3^{2-}$ 浓度下，会发生 F- 与 CO$_3^{2-}$ 之间竞争替代以及 A-B 型替代转变的现象，因此更利于碳酸根的 B 型替代。

参考文献: